first commit

This commit is contained in:
shahab00x 2024-02-18 03:56:20 +03:30
parent ec9a6a3b81
commit edd3fcaca5
4 changed files with 243 additions and 135 deletions

41
product_selector.yml Normal file
View File

@ -0,0 +1,41 @@
name:
css: '#productTitle'
type: Text
price:
css: '#price_inside_buybox'
type: Text
short_description:
css: '#featurebullets_feature_div'
type: Text
images:
css: '.imgTagWrapper img'
type: Attribute
attribute: data-a-dynamic-image
rating:
css: span.arp-rating-out-of-text
type: Text
number_of_reviews:
css: 'a.a-link-normal h2'
type: Text
variants:
css: 'form.a-section li'
multiple: true
type: Text
children:
name:
css: ""
type: Attribute
attribute: title
asin:
css: ""
type: Attribute
attribute: data-defaultasin
product_description:
css: '#productDescription'
type: Text
sales_rank:
css: 'li#SalesRank'
type: Text
link_to_all_reviews:
css: 'div.card-padding a.a-link-emphasis'
type: Link

38
review_selector.yml Normal file
View File

@ -0,0 +1,38 @@
product_title:
css: 'h1 a[data-hook="product-link"]'
type: Text
reviews:
css: 'div.review div.a-section.celwidget'
multiple: true
type: Text
children:
title:
css: a.review-title
type: Text
content:
css: 'div.a-row.review-data span.review-text'
type: Text
date:
css: span.a-size-base.a-color-secondary
type: Text
variant:
css: 'a.a-size-mini'
type: Text
images:
css: img.review-image-tile
multiple: true
type: Attribute
attribute: src
verified:
css: 'span[data-hook="avp-badge"]'
type: Text
author:
css: span.a-profile-name
type: Text
rating:
css: 'div.a-row:nth-of-type(2) > a.a-link-normal:nth-of-type(1)'
type: Attribute
attribute: title
next_page:
css: 'li.a-last a'
type: Link

View File

@ -9,155 +9,168 @@ from openai import OpenAI
import os
PROXY_HOST = 'localhost'
PROXY_PORT = 1091
class AmazonScraper:
def __init__(self):
PROXY_HOST = 'localhost'
PROXY_PORT = 1091
# self.images = []
proxy_dict = {
'http': f'socks5h://{PROXY_HOST}:{PROXY_PORT}',
'https': f'socks5h://{PROXY_HOST}:{PROXY_PORT}'
}
self.proxy_dict = {
'http': f'socks5h://{PROXY_HOST}:{PROXY_PORT}',
'https': f'socks5h://{PROXY_HOST}:{PROXY_PORT}'
}
HEADERS = {
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.157 Safari/537.36',
'Accept-Language': 'en-US, en;q=0.5'
}
HEADERS = {
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/44.0.2403.157 Safari/537.36',
'Accept-Language': 'en-US, en;q=0.5'
}
HEADERS = {
'authority': 'www.amazon.com',
'pragma': 'no-cache',
'cache-control': 'no-cache',
'dnt': '1',
'upgrade-insecure-requests': '1',
'user-agent': 'Mozilla/5.0 (X11; CrOS x86_64 8172.45.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.64 Safari/537.36',
'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9',
'sec-fetch-site': 'none',
'sec-fetch-mode': 'navigate',
'sec-fetch-dest': 'document',
'accept-language': 'en-GB,en-US;q=0.9,en;q=0.8',
}
self.HEADERS = {
'authority': 'www.amazon.com',
'pragma': 'no-cache',
'cache-control': 'no-cache',
'dnt': '1',
'upgrade-insecure-requests': '1',
'user-agent': 'Mozilla/5.0 (X11; CrOS x86_64 8172.45.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.64 Safari/537.36',
'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/*;q=0.8,application/signed-exchange;v=b3;q=0.9',
'sec-fetch-site': 'none',
'sec-fetch-mode': 'navigate',
'sec-fetch-dest': 'document',
'accept-language': 'en-GB,en-US;q=0.9,en;q=0.8',
}
def get_real_url_from_shortlink(self, short_url):
response = requests.get(short_url, headers=self.HEADERS, proxies=self.proxy_dict)
return response.url
def get_real_url_from_shortlink(short_url):
response = requests.get(short_url, headers=HEADERS, proxies=proxy_dict)
return response.url
def extract_asin(product_url):
# Extract the ASIN from the product URL
match = re.search(r'/dp/([A-Z0-9]+)', product_url)
if match:
return match.group(1)
else:
return None
def generate_review_url(product_url):
base_review_url = "https://www.amazon.com/product-reviews/"
asin = extract_asin(product_url)
if asin:
review_url = f"{base_review_url}{asin}"
return review_url
else:
return None
def scrape_amazon_product(product_url):
product_url = get_real_url_from_shortlink(product_url)
response = requests.get(product_url, headers=HEADERS, proxies=proxy_dict)
if response.status_code > 500:
if "To discuss automated access to Amazon data please contact" in response.text:
print("Page %s was blocked by Amazon. Please try using better proxies\n" % url)
def extract_asin(self, product_url):
# Extract the ASIN from the product URL
match = re.search(r'/dp/([A-Z0-9]+)', product_url)
if match:
return match.group(1)
else:
print("Page %s must have been blocked by Amazon as the status code was %d" % (url, response.status_code))
return None
#
# soup = BeautifulSoup(response.content, 'html.parser')
#
# # Extract relevant information
# product_title = soup.find('span', {'id': 'productTitle'}).text.strip()
# product_rating = soup.find('span', {'class': 'a-icon-alt'}).text.strip()
# review_count = soup.find('span', {'id': 'acrCustomerReviewText'}).text.strip()
return None
e = Extractor.from_yaml_file('product_selector.yml')
product_info = e.extract(response.text)
# Get link to reviews page
reviews_link = generate_review_url(product_url)
def generate_review_url(self, product_url):
base_review_url = "https://www.amazon.com/product-reviews/"
asin = self.extract_asin(product_url)
if asin:
review_url = f"{base_review_url}{asin}"
return review_url
else:
return None
# Load the Selectorlib YAML file (selectors.yml)
# You can customize this file to specify which data fields to extract
# For example, review title, review content, rating, etc.
review_selector_file = "review_selector.yml"
e = Extractor.from_yaml_file(review_selector_file)
def scrape_amazon_product(self, product_url):
product_url = self.get_real_url_from_shortlink(product_url)
response = requests.get(product_url, headers=self.HEADERS, proxies=self.proxy_dict)
# Send an HTTP request to the review page
reviews_response = requests.get(reviews_link, headers=HEADERS, proxies=proxy_dict)
if response.status_code > 500:
if "To discuss automated access to Amazon data please contact" in response.text:
print("Page %s was blocked by Amazon. Please try using better proxies\n" % product_url)
else:
print(
"Page %s must have been blocked by Amazon as the status code was %d" % (product_url, response.status_code))
return None
#
# soup = BeautifulSoup(response.content, 'html.parser')
#
# # Extract relevant information
# product_title = soup.find('span', {'id': 'productTitle'}).text.strip()
# product_rating = soup.find('span', {'class': 'a-icon-alt'}).text.strip()
# review_count = soup.find('span', {'id': 'acrCustomerReviewText'}).text.strip()
# print(reviews_response.text)
# Extract review data using the Selectorlib
review_data = e.extract(reviews_response.text)
e = Extractor.from_yaml_file('product_selector.yml')
product_info = e.extract(response.text)
# Get link to reviews page
reviews_link = self.generate_review_url(product_url)
return {
# 'Title': product_title,
# 'Rating': product_rating,
# 'Reviews': review_count,
# 'Reviews Link': reviews_link,
'info': product_info,
'review texts': review_data # Get the first 3 reviews (you can adjust this as needed)
}
# Load the Selectorlib YAML file (selectors.yml)
# You can customize this file to specify which data fields to extract
# For example, review title, review content, rating, etc.
review_selector_file = "review_selector.yml"
e = Extractor.from_yaml_file(review_selector_file)
def get_product_info_and_reviews(product_url):
product_info = scrape_amazon_product(url)
# print(product_info)
name = product_info['info']['name']
description = product_info['info']['product_description'] if product_info['info']['product_description'] is not None else product_info['info']['short_description']
reviews = ""
for review in product_info['review texts']['reviews']:
# print("{}\n{}\n\n".format(review['title'], review['content']))
reviews += "{}\n{}\n\n".format(review['title'], review['content'])
# Send an HTTP request to the review page
reviews_response = requests.get(reviews_link, headers=self.HEADERS, proxies=self.proxy_dict)
return f"product name : {name}\ndescription : {description}\n\nreviews : \n{reviews}"
# print(reviews_response.text)
# Extract review data using the Selectorlib
review_data = e.extract(reviews_response.text)
print(review_data)
print(product_info)
print(product_info['images'], type(product_info['images']))
self.images = eval(product_info['images']).keys()
print(self.images)
def ask_ai(prompt, model="mistralai/Mixtral-8x7B-Instruct-v0.1"):
TOGETHER_API_KEY = "fbd3e65ce35bfa645e9ddc696f51dc705db8eb97a561ed61b52c6435b24bc175"
return {
'info': product_info,
'review texts': review_data # Get the first 3 reviews (you can adjust this as needed)
}
client = OpenAI(api_key=TOGETHER_API_KEY,
base_url='https://api.together.xyz',
)
def get_product_info_and_reviews(self, product_url):
product_info = self.scrape_amazon_product(product_url)
# print(product_info)
name = product_info['info']['name']
description = product_info['info']['product_description'] if product_info['info'][
'product_description'] is not None else \
product_info['info']['short_description']
reviews = ""
for review in product_info['review texts']['reviews']:
# print("{}\n{}\n\n".format(review['title'], review['content']))
reviews += "{}\n{}\n\n".format(review['title'], review['content'])
return f"product name : {name}\ndescription : {description}\n\nreviews : \n{reviews}"
class AIInterface:
def __init__(self):
pass
def ask_ai(self, prompt, model="mistralai/Mixtral-8x7B-Instruct-v0.1"):
TOGETHER_API_KEY = "fbd3e65ce35bfa645e9ddc696f51dc705db8eb97a561ed61b52c6435b24bc175"
client = OpenAI(api_key=TOGETHER_API_KEY,
base_url='https://api.together.xyz',
)
chat_completion = client.chat.completions.create(
messages=[
{
"role": "system",
"content": "You are an author of a popular product-review weblog",
},
{
"role": "user",
"content": prompt,
}
],
model=model,
max_tokens=4096
)
return chat_completion.choices[0].message.content
chat_completion = client.chat.completions.create(
messages=[
{
"role": "system",
"content": "You are an author of a popular product-review weblog",
},
{
"role": "user",
"content": prompt_for_ai,
}
],
model=model,
max_tokens=4096
)
return chat_completion.choices[0].message.content
# Define the URL of the Amazon product page
# url = "https://www.amazon.com/Bark-Spark-Poo-Treats-Coprophagia/dp/B0CHZPFZL7/ref=zg_bsms_c_pet-supplies_d_sccl_3/143-8139391-6089832?pd_rd_w=KLu5Q&content-id=amzn1.sym.309d45c5-3eba-4f62-9bb2-0acdcf0662e7&pf_rd_p=309d45c5-3eba-4f62-9bb2-0acdcf0662e7&pf_rd_r=SYS7AW9XS89XM2EMRCFC&pd_rd_wg=wH6LW&pd_rd_r=b778cb5d-ec2b-4d58-9c0c-3799df0689fa&pd_rd_i=B0CVL3RZBX&psc=1"
llms = ['meta-llama/Llama-2-70b-chat-hf', "mistralai/Mixtral-8x7B-Instruct-v0.1", "togethercomputer/LLaMA-2-7B-32K"]
url = "https://amzn.to/3wd44FS"
text = get_product_info_and_reviews(url)
prompt_for_ai = "write an expanded summary of the following product and an overview of people's experiences based on the provided reviews of it as follows. Format it nicely in markdown:\n\n" + text
#
# llms = ['meta-llama/Llama-2-70b-chat-hf', "mistralai/Mixtral-8x7B-Instruct-v0.1", "togethercomputer/LLaMA-2-7B-32K"]
#
# url = "https://amzn.to/3wd44FS"
#
# scraper = AmazonScraper()
# aii = AIInterface()
#
# text = scraper.get_product_info_and_reviews(url)
#
# prompt_for_ai = "write an expanded summary of the following product and an overview of people's experiences based on the provided reviews of it as follows. Format it nicely in markdown:\n\n" + text
#
#
# ai_response = aii.ask_ai(prompt_for_ai, model=llms[1])
#
# print(prompt_for_ai)
pyperclip.copy(prompt_for_ai)
ai_response = ask_ai(prompt_for_ai, model=llms[1])
print("The answer from AI:\n\n")
print(ai_response)
pyperclip.copy(ai_response)
# print("The answer from AI:\n\n")
# print(ai_response)
#
# pyperclip.copy(ai_response)

View File

@ -1,21 +1,37 @@
import gradio as gr
from scrape_amazon import AmazonScraper, AIInterface
llms = ['meta-llama/Llama-2-70b-chat-hf', "mistralai/Mixtral-8x7B-Instruct-v0.1", "togethercomputer/LLaMA-2-7B-32K"]
scraper = AmazonScraper()
aii = AIInterface()
def write_article(url):
def write_article(url, ai_prompt):
# Your logic to fetch HTML content from the URL
# Replace this with your actual implementation
html_content = f"<h1>Sample HTML Content for {url}</h1>"
text = scraper.get_product_info_and_reviews(url)
images = list(scraper.images)[0]
prompt_for_ai = "Write a summary of the following product and an overview of people's experiences based on the provided reviews of it as follows. Format it nicely and professionally in HTML:\n\n" + text
# prompt_for_ai = f"Write a summary of the following product and an overview of people's experiences based on the provided reviews of it as follows. Format it nicely and professionally in HTML. The title of this product should links to {url}. Also include this image {images} after the first or second paragraph as a link to {url} and <figcaption>Image from Amazon.com</figcaption>:\n\n" + text
ai_response = aii.ask_ai(prompt_for_ai, model=llms[1])
print(ai_response)
html_content = ai_response
prompt_for_ai = f"Take the following HTML code and slightly modify it by converting the names of this product to links to {url}. Also include this image {images} after the first or second paragraph as a link to {url} and caption it with <figcaption>Image from Amazon.com</figcaption>. Return a nice and professional HTML code:\n" + ai_response
html_content = aii.ask_ai(prompt_for_ai, model=llms[1])
print(html_content)
return html_content
# Define the Gradio interface
iface = gr.Interface(
fn=write_article,
inputs="text", # Text input for the URL
inputs=["text", gr.components.Textbox(lines=10, placeholder="Enter AI prompt here...", label="AI Prompt:")], # Text input for the URL
outputs="html", # Display HTML content
title="URL to HTML Converter",
description="Enter a URL to get its HTML content."
)
# Launch the Gradio app
iface.launch(server_port=7373)
iface.launch(server_port=7373, share=True)